Книга I общая характеристика мира



бет6/51
Дата22.06.2016
өлшемі12.74 Mb.
1   2   3   4   5   6   7   8   9   ...   51

Рис. 25. Первые десять стран по размерам лесной площади

26. Проблемы обезлесения



Обезлесениет (обезлесиванием) называется исчезновение леса по естественным причинам или в результате хозяйственной деятельности человека.

Процесс антропогенного обезлесения фактически начался еще 10 тыс. лет назад, в эпоху неолитической революции и возникновения земледелия и скотоводства, и продолжается до наших дней. По существующим оценкам, в эпоху этой революции лесами было покрыто 62 млрд га (62 млн км2) земной суши, а с учетом кустарников и перелесков – 75 млрд га, или 56 % всей ее поверхности. Если сравнить вторую из этих цифр с современной, которая была приведена выше, нетрудно сделать вывод о том, что лесистость суши за время становления и развития человеческой цивилизации уменьшилась в два раза. Пространственное отражение этого процесса показывает рисунок 26.

Этот процесс проходил в определенной и вполне объяснимой географической последовательности. Так, сначала сведению подверглись леса в районах древних речных цивилизаций Передней Азии, Индии, Восточного Китая, а в эпоху античной цивилизации – и Средиземноморья. В средние века широкое сведение лесов началось и в зарубежной Европе, где до VII в. они занимали 70–80 % всей территории, и на Русской равнине. В XVII–XIX вв., с началом промышленных революций, активной промышленной и городской застройки, а также с дальнейшим развитием земледелия и животноводства, процесс обезлесения в наибольшей мере охватил Европу и Северную Америку, хотя затронул и некоторые другие регионы мира. В результате только в 1850–1980 гг. площадь лесов на Земле сократилась еще на 15 %.



Рис. 26. Изменение площади, покрытой лесной растительностью, за время существования цивилизации (по К. С. Лосеву)

Сведение лесов быстрыми темпами продолжается и в наши дни: ежегодно оно проявляется на площади примрено в 13 млн га (эти цифры сопоставимы с размерами территории целых стран, например Ливана или Ямайки). Главные причины сведения лесов остаются прежними. Это необходимость увеличения сельскохозяйственных угодий и площадей, предназначенных для промышленно-городской и транспортной застройки. Это также постоянный рост потребностей в деловой и дровяной древесине (на топливо идет примерно 1/2 всей добываемой в мире древесины). Вот почему объем заготовки древесины все время возрастает. Так, в 1985 г. мировой показатель его составлял примерно 3 млрд м3, а к 2000 г. он увеличился до 4,5–5 млрд м3, что сопоставимо со всем годовым приростом древесины в лесах мира. А ведь надо помнить еще о том ущербе, который наносят лесной растительности пожары, кислотные дожди и другие отрицательные последствия человеческой деятельности.

При этом, однако, нужно учитывать, что географическое распределение процесса обезлесения в последние десятилетия претерпело существенные изменения. Его эпицентр переместился из северного в южный лесной пояс.

В экономически развитых странах, находящихся в пределах северного лесного пояса, благодаря рациональному ведению лесного хозяйства положение в целом можно оценить как сравнительно благополучное. Лесные площади в этом поясе в последнее время не только не сокращаются, но даже несколько возрастают. Это стало следствием осуществления системы мер по сохранению и воспроизводству лесных ресурсов. Она включает в себя не только контроль за естественным возобновлением лесов, характерный прежде всего для таежных лесов Северной Америки и Евразии, но и искусственное лесоразведение, применяемое в странах (прежде всего европейских) со сведенными ранее и малопродуктивными лесами. В наши дни объем искусственного лесовосстановления в северном лесном поясе достигает уже 4 млн га в год. В большинстве стран Европы и Северной Америки, а также в Китае прирост древесины превышает объемы ежегодных рубок.

Это означает, что все сказанное выше о растущем обезлесении относится в основном к южному лесному поясу, где этот процесс приобретает характер экологической катастрофы. Тем более что леса этого пояса, как хорошо известно, выполняют важнейшую функцию «легких» нашей планеты и именно в них сосредоточено более половины всех видов фауны и флоры, представленных на Земле.



Рис. 27. Гибель тропических лесов в развивающихся странах в 1980–1990 гг. (по «Рио-92»)

Общая площадь тропических лесов к началу 1980-х гг. еще составляла около 2 млрд га. ВАмерике они занимали 53 % всей площади, в Азии – 36, в Африке – 32 %. Эти леса, находящиеся в пределах более чем 70 стран, принято подразделять на вечнозеленые и полулистопадные леса постоянно влажных тропиков и листопадные и полулистопадные леса и древесно-кустарниковые формации сезонно-влажных тропиков. К категории влажных тропических лесов относятся примерно 2/3 всех тропических лесов мира. Почти 3/4 из них приходятся всего на десять стран– Бразилию, Индонезию, Демократическую Республику Конго, Перу, Колумбию, Индию, Боливию, Папуа – Новую Гвинею, Венесуэлу и Мьянму.

Однако затем сведение лесов южного пояса ускорилось: в документах ООН скорость этого процесса сначала оценивалась в 11, а затем стала оцениваться в 15 млн га в год (рис. 27). Статистика свидетельствует о том, что только в первой половине 1990-х гг. в южном поясе было вырублено более 65 млн га лесов. По некоторым оценкам, общая площадь тропических лесов за последние десятилетия уже уменьшилась на 20–30 %. Наиболее активно этот процесс протекает в Центральной Америке, в северной и юго-восточной частях Южной Америки, в Западной, Центральной и Восточной Африке, в Южной и Юго-Восточной Азии (рис. 28).

Этот географический анализ можно довести и до уровня отдельных стран (табл. 29). Вслед за первой десяткой стран-«рекордсменов», представляющих почти все отмеченные выше регионы, следуют Танзания, Замбия, Филиппины, Колумбия, Ангола, Перу, Эквадор, Камбоджа, Никарагуа, Вьетнам и др. Что же касается лесных потерь отдельных стран, выраженных не в абсолютных, а в относительных показателях, то здесь в качестве «лидеров» выступают Ямайка (там сводили 7,8 % лесов в год), Бангладеш (4,1), Пакистан и Таиланд (3,5), Филиппины (3,4 %). Но и во многих других странах Центральной и Южной Америки, Африки, Южной и Юго-Восточной Азии такие потери составляют 1–3 % в год. В результате в Сальвадоре, на Ямайке, Гаити почти все тропические леса фактически уже сведены, на Филиппинах сохранилось только 30 % первичных лесов.





Рис. 28. Страны с наибольшими ежегодными объемами сведения тропических лесов (по Т. Миллеру)

Можно назвать три главные причины, приводящие к обезлесению в южном лесном поясе.

Первая из них заключается в расчистке земель для городских, транспортных нужд и особенно для подсечно-огневого земледелия, которым в тропических лесах и саваннах все еще занято 20 млн семей. Считается, что подсечно-огневая система земледелия служит причиной сведения 75 % площади лесов Африки, 50 % лесов Азии и 35 % лесов Латинской Америки.

Таблица 29

ПЕРВЫЕ ДЕСЯТЬ СТРАН ПО РАЗМЕРАМ СРЕДНЕГОДОВОГО СВЕДЕНИЯ ЛЕСОВ



Вторая причина заключается в использовании древесины в качестве топлива. По данным ООН, 70 % населения развивающихся стран для обогрева жилищ и приготовления пищи используют дрова. Во многих странах Тропической Африки, в Непале, на Гаити их доля в используемом топливе доходит до 90 %. Подъем цен на нефть на мировом рынке в 1970-х гг. привел к тому, что леса стали вырубаться (прежде всего в Африке и в Южной Азии) не только в ближнем, но и в дальнем окружении городов. В 1980 г. в районах, испытывавших недостаток дров, проживало примерно 1,2 млрд жителей развивающихся стран, а к 2005 г. численность их возросла до 2,4 млрд.

Третья причина заключается в возрастании экспорта тропической древесины из стран Азии, Африки и Латинской Америки в Японию, Западную Европу и США, ее использовании для нужд целлюлозно-бумажной промышленности.

Бедные и тем более беднейшие из развивающихся стран вынуждены идти на это, чтобы хоть немного улучшить свой платежный баланс, отягощенный долгами богатым странам Севера. Многие считают, что их нельзя осуждать за такую политику. Например, на открытии проходившего в Париже в 1991 г. IX лесного конгресса бывший тогда президентом Франции Франсуа Миттеран сказал: «Какое мы имеем право упрекать население тропических районов, например, за то, что они способствуют разрушению лесов, когда они вынуждены это делать, чтобы просто прожить».

Для предотвращения полного уничтожения тропических лесов уже в XXI в. необходимы срочные и действенные меры. Среди возможных путей воспроизводства лесных площадей в южном поясе наибольший эффект, пожалуй, может дать создание лесных плантаций, специально предназначенных для выращивания высокопродуктивных и быстрорастущих пород деревьев, например эвкалиптов. Имеющийся опыт создания таких плантаций показывает, что они позволяют вырастить в 10 раз больше полноценной древесины, чем, скажем, европейские леса. В конце 1990-х гг. такие плантации во всем мире занимали уже 4,5 млн га, из которых 2 млн га находились в Бразилии.

На Всемирной конференции по окружающей среде и развитию в Рио-де-Жанейро в 1992 г. в качестве специального документа было принято Заявление о принципах в отношении лесов.

Многие из перечисленных выше проблем актуальны и для России, несмотря на ее богатство лесными ресурсами. При формальном подходе к этому вопросу оснований для какого-либо беспокойства не возникает. Действительно, расчетная лесосека страны составляет 540 млн м3, а фактически вырубается примерно 100 млн м3. Однако это средние показатели, не учитывающие различий между европейской частью страны, где расчетную лесосеку зачастую превышают, и азиатской ее частью, где ее недоиспользуют. Необходимо принимать во внимание и значительную гибель лесных насаждений, в первую очередь из-за лесных пожаров (в 2006 г. – 15 млн га). Поэтому в России принимают меры по рациональному лесопользованию и воспроизводству лесных ресурсов. Теперь площади под лесами в ней не уменьшаются, а растут.

27. Биологические ресурсы Мирового океана

Понятие о биологических ресурсах Мирового океана можно трактовать в двух смыслах – более широком и более узком. В первом из них это все разнообразие животных и растений, обитающих в морской и океанической среде, во втором – лишь та их часть, которая имеет или может иметь промысловое значение. Если действительно иметь в виду возможные для использования человеком ресурсы, то вторая трактовка, наверное, более правильна. Однако в литературе чаще встречается оценка суммарных биологических ресурсов Мирового океана.

Суммарную биомассу Мирового океана разные источники определяют с большими различиями, но чаще всего – в 35–40 млрд т. Это означает, что биомасса Мирового океана значительно меньше биомассы суши. Для нее характерно также другое соотношение фитомассы (растительные организмы) и зоомассы (животные организмы). На суше фитомасса превышает зоомассу примерно в 2000 раз, а в Мировом океане биомасса животных превосходит биомассу растений более чем в 18 раз. Без учета человеческого вмешательства в природные процессы морские экосистемы, как и экосистемы суши, могут поддерживать себя сами.

Для биологических ресурсов Мирового океана характерны не только очень большие размеры, но и исключительное разнообразие. Воды морей и океанов, по существу, представляют собой густонаселенный мир множества живых организмов: от микроскопических бактерий до самых крупных животных на Земле – китов. На обширных океанских пространствах, от освещенной Солнцем поверхности до темного и холодного царства морских глубин, обитает около 180 тыс. видов животных, в том числе 16 тыс. различных видов рыб, 7,5 тыс. видов ракообразных, около 50 тыс. видов брюхоногих моллюсков. В Мировом океане насчитывается также 10 тыс. видов растений.

Исходя из образа жизни и местообитания, все живущие в Мировом океане организмы обычно подразделяют на три класса.

К первому классу, обладающему наибольшей биомассой и самым большим разнообразием видов, относят планктон (в переводе с греческого – «блуждающий», «парящий»), который, в свою очередь, подразделяют на фитопланктон и зоопланктон. Планктон распространен преимущественно в поверхностных горизонтах океанской толщи (до глубины 100–150 м), причем фитопланктон – главным образом мельчайшие одноклеточные водоросли – служит кормом для многих видов зоопланктона, который по объему биомассы (20–25 млрд т) занимает в Мировом океане первое место.

Ко второму классу морских организмов относят нектон (в переводе с греческого – «плавающий»). Он включает в себя всех животных, способных самостоятельно передвигаться в водной толще морей и океанов. Это рыбы, киты, дельфины, моржи, тюлени, кальмары, креветки, осьминоги, черепахи и некоторые другие виды. Ориентировочная оценка суммарной биомассы нектона – 1 млрд т, половина ее приходится на рыб.

Третий класс объединяет морские организмы, обитающие на дне океана или в донных отложениях, – бентос (в переводе с греческого – «прикрепленный ко дну», «глубинный»). В качестве представителей зообентоса можно назвать различные виды двустворчатых моллюсков (мидии, устрицы и др.), ракообразных (крабы, омары, лангусты), иглокожих (морские ежи) и других донных животных. Фитобентос представлен прежде всего разнообразными водорослями. По размерам биомассы зообентос (10 млрд т) уступает только зоопланктону.

Географическое распространение биологических ресурсов Мирового океана (как и биологических ресурсов суши) крайне неравномерно. В его пределах довольно четко выделяются очень высокопродуктивные, высокопродуктивные, среднепродуктивные, малопродуктивные и самые малопродуктивные области. Естественно, что наибольший хозяйственный интерес представляют две первые из них. Именно эти области имел в виду В. И. Вернадский, когда писал о наличии в Мировом океане особых сгущений Такие сгущения жизни связаны преимущественно с шельфовыми зонами (рис. 29).

Интересно, что продуктивные области в Мировом океане могут иметь характер широтных поясов, что в значительной мере обусловлено неодинаковым распределением солнечной энергии. Так, обычно выделяют следующие природно-рыбохозяйственные пояса: арктический и антарктический (соответственно менее 1 и 15 % площади океанского сектора), умеренные пояса Северного и Южного полушарий (11 и 34 %), тропическо-экваториальный пояс (40 %). Наибольшее хозяйственное значение из них имеет умеренный пояс Северного полушария.

Для более полной характеристики географического распространения биологических ресурсов большой интерес представляет распределение их между отдельными океанами Земли.

Первое место и по общему объему биомассы, и по числу видов занимает Тихий океан. Это объясняется в первую очередь огромными размерами его акватории и большим разнообразием природных условий в ее пределах. Животный мир его по видовому составу в три-четыре раза богаче, чем других океанов. Фактически здесь представлены все виды живых организмов, населяющих Мировой океан. Тихий океан отличается от других также высокой биологической продуктивностью, особенно в умеренных и экваториальном поясах. Но еще более велика биологическая продуктивность в зоне шельфа: именно здесь обитает и нерестится подавляющее большинство тех морских животных, которые служат объектами промысла.



Рис. 29. Рыбопродуктивность Мирового океана (по П. П. Моисееву): 1 – более 3000 кг/км2; 2 – более 1000; 3 – более 500; 4 – более 200; 5 – более 100; 6 – более 10; 7 – более 7 кг/км2

Очень богаты и разнообразны также биологические ресурсы Атлантического океана. Как и Тихий океан, он выделяется высокой средней биологической продуктивностью. Животные населяют всю толщу его вод. В умеренных и холодных водах обитают крупные морские млекопитающие (киты, ластоногие), сельдевые, тресковые и другие виды рыб, ракообразные. В тропической части океана количество видов измеряется уже не тысячами, а десятками тысяч. Разнообразные организмы обитают и в его глубоководных горизонтах в условиях огромного давления, низких температур и вечной тьмы. Плотность планктона наиболее велика между 45° и 75° обоих полушарий. А в прибрежных районах большое распространение имеют морские водоросли (макрофиты).

Значительными биологическими ресурсами обладает также Индийский океан, но изучены они здесь хуже и используются пока меньше. Что же касается Северного Ледовитого океана, то преобладающая часть холодных и ледовитых вод Арктики неблагоприятна для развития жизни и поэтому мало продуктивна. Лишь в приатлантической части этого океана, в зоне влияния Гольфстрима, его биологическая продуктивность значительно повышается.

Россия обладает очень большими и разнообразными морскими биологическими ресурсами. В первую очередь это относится к морям Дальнего Востока, причем самое большое разнообразие (800 видов) отмечается у берегов южных Курильских островов, где сосуществуют холоднолюбивые и теплолюбивые формы. Из морей Северного Ледовитого океана наиболее богато биоресурсами Баренцево море.

28. Мировые климатические ресурсы

Климатическими ресурсами называют неисчерпаемые природные ресурсы, включающие в себя солнечную энергию, влагу и энергию ветра. Их не потребляют непосредственно в материальной и нематериальной деятельности люди, не уничтожают в процессе использования, но они могут ухудшаться (загрязняться) или улучшаться. Климатическими их называют потому, что они определяются прежде всего теми или иными особенностями климата.

Солнечная энергия – самый крупный энергетический источник на Земле. В научной литературе приводятся многочисленные, хотя и довольно сильно различающиеся, оценки мощности солнечной радиации, которые к тому же выражаются в разных единицах измерения. По одному из таких расчетов, годовая солнечная радиация составляет 1,5– 1022 Дж, или 134-1019ккал, или 178,6-1012 кВт, или 1,56 1018 кВт • ч. Это количество в 20 тыс. раз превышает современное мировое потребление энергии.

Однако значительная часть солнечной энергии не доходит до земной поверхности, а отражается атмосферой. В результате поверхности суши и Мирового океана достигает радиация, измеряемая в 1014 кВт, или 105 млрд кВт-ч (0,16 кВт на 1 км2 поверхности суши и Мирового океана). Но, конечно, только очень небольшая ее часть может быть практически использована. Академик М. А. Стырикович оценивал технический потенциал солнечной энергии «всего» в 5 млрд тут в год, а практически возможный для реализации – в 0, млрд тут. Едва ли не главная причина подобной ситуации – слабая плотность солнечной энергии.

Однако выше говорилось о средних величинах. Доказано, что в высоких широтах Земли плотность солнечной энергии составляет 80– 130 Вт/м2, в умеренном поясе – 130–210, а в пустынях тропического пояса – 210–250 Вт/м2. Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах, расположенных в аридном поясе, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн человек, в том числе 60 млн в сельской местности.

Ветровую энергию Земли также оценивают по-разному. На 14-й сессии МИРЭК в 1989 г. она была оценена в 300 млрд кВт-ч в год. Но для технического освоения из этого количества пригодно только 1,5 %. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Однако на Земле есть и такие районы, где ветры дуют с достаточными постоянством и силой. Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Одной из разновидностей климатических ресурсов можно считать агроклиматические ресурсы, т. е. ресурсы климата, оцениваемые с позиций жизнедеятельности сельскохозяйственных культур. К числу факторов – сизни этих культур обычно относят воздух, свет, тепло, влагу и питательные вещества.

Воздух – это естественная смесь газов, составляющих атмосферу Земли. У земной поверхности сухой воздух состоит главным образом из азота (78 % общего объема), кислорода (21 %), а также (в небольших количествах) аргона, углекислого и некоторых других газов. Из них для жизнедеятельности живых организмов наибольшее значение имеют кислород, азот и углекислый газ. Понятно, что воздух относится к категории неисчерпаемых ресурсов. Однако с ним тоже связаны проблемы, широко обсуждаемые в географической литературе.

Прежде всего это проблема – как это ни парадоксально звучит – «исчерпания» содержащегося в воздухе и необходимого всему живому кислорода. Считается, что до середины XIX в. содержание кислорода в атмосфере было относительно стабильным, а поглощение его при окислительных процессах компенсировалось фотосинтезом. Но затем началась постепенная его убыль – прежде всего в результате сжигания органического топлива и распространения некоторых технологических процессов. В наши дни только сжигание топлива приводит к расходованию 10 млрд т свободного кислорода в год. Легковой автомобиль на каждые 100 км пробега расходует годовой кислородный «паек» одного человека, а все автомобили забирают столько кислорода, сколько его хватило бы для 5 млрд человек в течение года. Лишь за один трансатлантический рейс реактивный лайнер сжигает 35 т кислорода. Эксперты ООН подсчитали, что в наши дни на планете ежегодно потребляют такое количество кислорода, которого хватило бы для дыхания 40–50 млрд человек. Только за последние 50 лет было израсходовано более 250 млрд т кислорода. Это уже привело к уменьшению его концентрации в атмосфере на 0,02 %.

Конечно, такое уменьшение пока практически неощутимо, поскольку человеческий организм чувствителен к снижению концентрации кислорода более, чем на 1 %. Однако, по расчетам известного ученого-климатолога Ф. Ф. Давитая, при ежегодном увеличении безвозвратно расходуемого кислорода на 1 %, 2/3 его общего запаса в атмосфере могут быть исчерпаны за 700 лет, а при ежегодном росте на 5 % – за 180 лет. Впрочем, некоторые другие исследователи приходят к выводу о том, что уменьшение запаса свободного кислорода не представляет и не будет представлять собой серьезной опасности для человечества.

Свет (солнечная радиация) служит главным источником энергии для всех физико-географических процессов, протекающих на Земле. Обычно световая энергия выражается в тепловых единицах – калориях из расчета на единицу площади за определенное время. Однако при этом важно учитывать соотношение видимого света и невидимого излучения Солнца, прямой и рассеянной, отраженной и поглощенной солнечной радиации, ее интенсивность.

С агроклиматической точки зрения особенно важна та часть солнечного спектра, которая непосредственно участвует в фотосинтезе, ее называют фотосинтетически активной радиацией. Важно также учитывать длину светового дня, с которой связано подразделение сельскохозяйственных культур на три категории: растений короткого дня (например, хлопчатник, кукуруза, просо), растений длинного дня (например, пшеница, рожь, ячмень, овес) и растений, которые сравнительно мало зависят от этого показателя (например, подсолнечник).

Тепло – еще один важнейший фактор, определяющий рост и развитие сельскохозяйственных культур. Обычно запасы тепла исчисляют в виде суммы температур, получаемых растениями за период их вегетации. Этот показатель, называемый суммой активных температур, был предложен известным русским агроклиматологом Г. Т. Селяниновым еще в 30-х гг. XX в. и с тех пор широко вошел в научный оборот. Он представляет собой арифметическую сумму всех средних суточных температур за период вегетации растений. Для большинства зерновых культур умеренного пояса, относительно холодностойких, сумму активных температур обычно подсчитывают для периода, когда средние температуры превышают +5 °C. Для некоторых более теплолюбивых культур – таких, например, как кукуруза, подсолнечник, сахарная свекла, плодовые – отсчет этих температур ведут начиная с показателя +10 °C, для субтропических и тропических – +15 °C.

Влага также представляет собой необходимое условие жизни всех живых организмов и сельскохозяйственных культур. Это объясняется ее участием в фотосинтезе, большой ролью в процессах терморегуляции и переноса питательных веществ. При этом обычно для образования единиц сухого вещества растение должно впитать в себя в сотни раз большее количество влаги.

Для определения размеров потребления влаги растениями и необходимого уровня увлажнения сельскохозяйственных угодий применяют различные показатели. Один из наиболее употребительных показателей – гидротермический коэффициент – также был предложен Г. Т. Селяниновым.

Он представляет собой соотношение осадков и суммы активных температур. Этот показатель используют и для определения влагообеспеченности территории с подразделением ее на очень сухую (гидротермический коэффициент меньше 0,3), сухую (0,4–0,5), засушливую (0,5–0,7), испытывающую недостаток влаги (0,8–1,0), отличающуюся равенством ее прихода и расхода (1,0), обладающую достаточным количеством влаги (1,0–1,5) и ее избытком (более 1,5).

С позиций географического изучения агроклиматических ресурсов большой интерес представляет также агроклиматическое районирование мира. В отечественных источниках за его основу обычно берут схему такого районирования, которая была разработана для Агроклиматического атласа мира, вышедшего в 1972 г. Она составлена с использованием двух главных уровней.

На первом уровне районирование проводилось по степени теплообеспеченности с выделением следующих тепловых поясов и подпоясов:

– холодного пояса с коротким периодом вегетации, где сумма активных температур не превышает 1000 °C, а земледелие в открытом грунте практически невозможно;

– прохладного пояса, где теплообеспеченность возрастает от 1000 °C на севере до 2000 °C на юге, что позволяет выращивать некоторые нетребовательные к теплу культуры, да и то при очаговом земледелии;

– умеренного пояса, где теплообеспеченность изменяется в пределах от 2000 до 4000 °C, а продолжительность вегетационного периода колеблется от 60 до 200 дней, что создает возможности для массового земледелия с широким набором культур (этот пояс подразделяется на два подпояса – типично умеренный и теплоумеренный);

– теплого (субтропического) пояса с суммой активных температур от 4000 до 8000 °C, что позволяет расширить ассортимент сельскохозяйственных культур, введя в него теплолюбивые субтропические виды (в нем также выделяют два подпояса – умеренно теплый и типично теплый);

– жаркого пояса, где сумма активных температур повсеместно превышает 8000 °C, а иногда и 10 000 °C, что позволяет выращивать характерные для тропических и экваториальных зон культуры в течение всего года.

На втором уровне агроклиматического районирования термические пояса и подпояса подразделяются еще на 16 областей, выделяемых в зависимости от режима увлажнения (избыточного, достаточного, недостаточного – в течение как всего года, так и отдельных его сезонов).

Эту же классификацию, но обычно ограниченную первым уровнем и несколько упрощенную, применяют и в учебных атласах, в том числе в школьных. По соответствующим картам нетрудно ознакомиться и с ареалами распространения отдельных термических поясов. Можно определить также, что территория России находится в пределах трех поясов – холодного, прохладного и умеренного. Вот почему основную ее часть занимают земли с низкой и пониженной биологической продуктивностью и сравнительно небольшую – со средней продуктивностью. Ареалы с высокой и очень высокой продуктивностью в ее пределах фактически отсутствуют.

29. Рекреационные ресурсы

Хорошо известно, какое важное место в жизни современных людей приобрела рекреация.[25] Разнообразные занятия людей, участвующих в рекреации, называют рекреационной деятельностью. Она может быть более пассивной и более активной, вызывать большую или меньшую подвижность населения. При этом она может быть кратковременной (суббота – воскресенье) и длительной (во время отпуска). Для нее характерны сезонные колебания (летом – морские пляжи и берега рек и озер, зимой – районы лыжного и горнолыжного спорта и т. д.).

Рекреационная деятельность основана на использовании рекреационных ресурсов, определяющих рекреационный потенциал той или иной территории. Под рекреационными ресурсами понимают природные и антропогенные объекты, которые обладают такими свойствами, как уникальность, историческая или художественная ценность, эстетическая привлекательность и целебно-оздоровительная значимость, и могут быть использованы для организации различных видов рекреационной деятельности. В зависимости от ее характера принято выделять территории: 1) с высокой интенсивностью рекреации, на которых именно рекреация служит главным видом землепользования (парки, пляжи и другие зоны массового отдыха); 2)со средней интенсивностью рекреации, которые используют и для иных, нерекреационных целей (пригородные зеленые насаждения, лесные полосы); 3) с небольшой интенсивностью рекреации.

Как вытекает из приведенного выше определения, все рекреационные ресурсы можно подразделить на два основных подтипа: природно-рекреационные ресурсы и рекреационные ресурсы антропогенного происхождения.

К природно-рекреационным ресурсам могут относиться и благоприятные с точки зрения рекреации отдельные компоненты природы (рельеф, климат, растительность, водоемы), и целые природные комплексы. Последние могут включать в себя такие «пары» как, например, «лес– водоем», «лес– луг», «холм – поле» и т. д., либо иметь еще более сложное и комплексное строение.

В зависимости от влияния природных факторов на организм человека принято различать три типа рекреационных ресурсов. Первый тип – медико-биологический, с решающей ролью климатических условий (температура, влажность, погода и ее изменчивость, продолжительность безморозного периода и др.), которые во многом определяют комфортность природных комплексов для рекреации. Второй тип – психолого-эстетический, при котором в первую очередь оценивается эстетическое воздействие на человека природного ландшафта в целом или отдельных его компонентов; едва ли не решающую роль при этом играет разнообразие пейзажей. Третий тип – технологический, предполагающий прежде всего возможности инженерно-строительного освоения природно-рекреационных территорий (строительство санаториев, домов отдыха, кемпингов, лыжных и горнолыжных баз и т. д.).

Рекреационные ресурсы антропогенного происхождения чаще называют культурно-историческими ресурсами. Они служат главной предпосылкой для организации культурно-познавательной рекреационной деятельности и во многом определяют рекреационные потоки людей. Такие ресурсы подразделяют на материальные, олицетворенные в конкретных материальных объектах, и духовные, нашедшие отражение в науке, образовании, искусстве, литературе, народном быте и творчестве. Их принято также подразделять на памятники истории, археологии, градостроительства и архитектуры, искусства.

Многие страны уже давно начали составлять своего рода реестры своих главных природных и культурно-исторических достопримечательностей, принимать необходимые меры по их сохранению и одновременно пропагандировать их в качестве объектов рекреации и туризма. Но при всей важности такого национального подхода, еще более важной качественно новой ступенью стало понятие о Всемирном природном и культурном наследии человечества. Объекты Всемирного наследия становятся все более важными центрами рекреационной деятельности, в особенности рекреационно-познавательной. Иными словами, они формируют огромный рекреационный ресурс общечеловеческого значения.

30. Антропогенное воздействие на литосферу и ее охрана

Загрязнение окружающей природной среды отходами производственной и непроизводственной деятельности людей относится ко всем геосферам нашей планеты, в том числе и к литосфере. В этом случае речь идет прежде всего о твердых отходах, которые накапливаются на свалках, в отвалах, хвостохранилищах и служат опасными источниками загрязнения земной поверхности, почвенного покрова, а через него – и других компонентов экосистем.

В научной литературе нет единой оценки количества твердых отходов разнообразной деятельности человека. Еще в 1970-х гг. их мировой уровень определялся всего в 20–40 млрд т/год, ныне же чаще всего можно встретить оценку в 300 млрд т, соответствующую 50 т отходов из расчета на одного жителя Земли. По имеющимся прогнозам, объем таких отходов к 2025 г. может еще значительно возрасти.

Обычно твердые отходы подразделяют на бытовые (муниципальные), промышленные, сельскохозяйственные и шлам (сухой остаток после обезвоживания илов из очистных сооружений). Из них, как показывает практика, в более или менее значительной степени утилизируют только сельскохозяйственные отходы, тогда как остальные складируют, захоранивают или сжигают.

Твердые бытовые отходы (бытовой мусор) – это совокупность твердых отходов и отбросов, образующихся в бытовых условиях. Обычно они состоят из бумаги, металлов, древесины, стекла, полимеров, текстиля, пищевых отбросов и др. Мировым «рекордсменом» по объему бытового мусора были и остаются США, где еще в начале 1990-х гг. соответствующий показатель превышал 200 млн т в год. Однако для определения степени «замусоренности» литосферы обычно применяют не общие, а душевые показатели. Как вытекает из данных, приведенных в таблице 30, США лидируют в мире и по этому показателю. Обращает на себя внимание и то, что в составе первой десятки стран в этом случае фигурируют только экономически развитые страны, отличающиеся к тому же высоким уровнем урбанизации (основную часть бытового мусора дают города, особенно крупные).

Не менее, если не более серьезную экологическую опасность представляют собой промышленные отходы, объем которых обычно бывает на порядок больше, чем объем бытового мусора. Это прежде всего относится к некоторым «грязным» отраслям тяжелой промышленности – энергетической, металлургической, химической, целлюлозно-бумажной, которые большую часть используемого сырья пускают в отходы, способствуя тем самым металлизации и химизации окружающей природной среды.



Таблица 30

ПЕРВЫЕ ДЕСЯТЬ СТРАН ПО ОБЪЕМУ БЫТОВЫХ ОТХОДОВ ИЗ РАСЧЕТА НА ОДНОГО ЖИТЕЛЯ



Но, пожалуй, еще более прямое негативное воздействие на литосферу оказывают отрасли горнодобывающей промышленности, причем и при шахтной, и при открытой добыче полезных ископаемых. Общая площадь нарушенных горными разработками земель в мире составляет 12–15 млн га.

Особое место среди твердых отходов занимают экологически наиболее опасные отходы, которые называют также токсичными отходами. Их хранят в специальных хранилищах, накопителях, на складах, в особых могильниках. К их числу относятся некоторые металлы (например, свинец, кадмий, ртуть, мышьяк), которые токсичны даже в очень малых дозах и к тому же обладают способностью накапливаться в организме человека, а также некоторые углеводороды, обладающие канцерогенными свойствами, пестициды и др. Примерно 9/10 токсичных отходов в мире приходятся на экономически развитые страны, причем на первом месте по их объему находятся США, а на втором стоит Россия.

Особую проблему составляют обезвреживание, хранение и захоронение радиоактивных отходов, которые образуются в результате работы атомных электростанций, судовых двигателей, предприятий военной промышленности, некоторых научных институтов. Такие отходы большей частью захоранивают в специальных хранилищах на суше. С течением времени это становится все более технически сложным и экологически опасным (в особенности захоронение высокоактивных отходов ядерного комплекса, например тепловыделяющих элементов ядерных реакторов – ТВЭЛов). Предприятия по переработке ТВЭЛов в экологическом отношении значительно более опасны, чем обычные АЭС. Больше всего радиоактивных отходов образуется в США, России, Канаде, во Франции, в Великобритании.

Из всего сказанного видно, насколько важно для защиты литосферы и улучшения общей экологической обстановки обеспечить удаление и переработку твердых отходов.

В США, Канаде, большинстве стран Европы твердые отходы складируют на специально отведенных участках. Таким путем в этих странах избавляются примерно от 70 %, а в Англии – даже от 90 % твердых отходов. Кроме того, бытовые отходы сжигают, компостируют или отправляют на мусороперерабатывающие заводы, которых в США, например, более 300. При этом значительную часть промышленных отходов передают в другие отрасли (например, на предприятия по производству строительных материалов), где они служат вторичным сырьем.

Для облагораживания земель, нарушенных горными разработками, особенно открытыми, применяют рекультивацию, обычно включающую два последовательных этапа. На первом, горнотехническом, этапе проводят выравнивание территории, восстановление плодородия почв, строительство дорог и т. д. На втором, биологическом, осуществляют восстановление флоры и фауны. Биологическая рекультивация может быть сельскохозяйственной, лесной или рекреационной.

Ясно, однако, что все эти меры направлены на устранение отрицательных последствий воздействия людей на литосферу, а не на их предупреждение, которое требует использования более современных технологических процессов, уменыиающих материалоемкость производства. При этом необходимо учитывать, что в настоящее время только 5—10 % всего добываемого и получаемого сырья переходит в конечную продукцию, тогда как 90–95 % в процессе переработки превращается в отходы. Нужно учитывать и то, что постепенное вовлечение в хозяйственный оборот все более бедных источников сырья, в особенности рудного, увеличивает объемы пустой породы, предназначенной для пополнения отвалов.

Все перечисленные проблемы очень актуальны и для России. Достаточно сказать, что в бывшем СССР ежегодно образовывалось 12–15 (или даже 15–20) млрд т твердых отходов, из которых утилизировали лишь небольшую часть. В результате Россия получила «в наследство», по разным оценкам, от 50 до 90 млрд т отходов (в отвалах, хранилищах, на полигонах и т. д.), в том числе 1 млрд т токсичных отходов. К тому же ежегодный прирост объема таких отходов уже в самой России составляет 5–7 млрд т, так что всего под их складирование занято 150 тыс. га земельной площади. Растет и количество бытовых отходов. В Москве, например, оно превышает 2,3 млн т в год, что соответствует 250–270 кг на одного жителя. Около тысячи действующих шахт и рудников и несколько тысяч карьеров уже привели к тому, что общая площадь нарушенных земель в стране составляет 1,2 млн га, из которых половина приходится на земли, нарушенные при добыче полезных ископаемых и геологоразведке.

31. Антропогенное загрязнение вод суши и их охрана

Многочисленные и разнообразные источники загрязнения вод суши можно подразделить на природные и антропогенные.

Среди природных источников крупными масштабами и поистине глобальным охватом выделяется вулканическая и флюидная активность Земли, при которой в качестве главных загрязнителей выступают газы, твердые взвешенные и растворенные в воде соединения серы, хлора, азота, фосфора, тяжелых металлов и радиоактивных элементов.

Загрязнение вод происходит также при процессах их физико-химического взаимодействия с горными породами, при выпадении атмосферных осадков, при биологической активности, связанной с жизнедеятельностью водорослей, бактерий и других микроорганизмов.

Однако гораздо большую отрицательную роль играет антропогенное загрязнение вод суши. Общая его характерная черта заключается в формировании высоких концентраций многих токсичных веществ на отдельных участках среды обитания людей. Изменения химического состава вод во многих из таких районов стали уже настолько значительными, что они приобрели резко аномальные геохимические свойства.

В качестве главных источников загрязнения вод выступают фактически все области хозяйственной деятельности людей – промышленность, транспорт, сельское хозяйство, коммунальное хозяйство, непроизводственная сфера. Но их участие в таком загрязнении все же не одинаково. В загрязнении поверхностных и подземных вод суши наиболее велика доля промышленности, в особенности предприятий энергетики, черной и цветной металлургии, нефтепереработки и нефтехимии, деревообрабатывающей и целлюлозно-бумажной промышленности. Один из крупных источников загрязнения вод – сельское хозяйство. Оно «сбрасывает» в них не только частички почвы и органических веществ, но и, главное, химические удобрения и ядохимикаты, а также отходы животноводческих ферм. Водный транспорт тоже представляет собой немалую угрозу для чистоты вод, особенно в случаях прямого сброса в них разного рода отходов и попадания нефтепродуктов. Наконец, к крупным загрязнителям следует отнести и коммунальное хозяйство городов. С ним связаны загрязнение и засорение водных источников разнообразными органическими и минеральными веществами, многие из которых особенно опасны для здоровья человека.

В зависимости от того, какие вещества попадают в гидросферу, принято различать три главных вида ее загрязнения – физическое, химическое и биологическое.



Физическое загрязнение гидросферы суши вызывается прежде всего твердыми отходами – обыкновенным городским мусором, потерями леса при молевом сплаве. Оно происходит также при добыче некоторых полезных ископаемых (золота и др.) непосредственно в руслах рек. Такое загрязнение обычно не создает непосредственной опасности для живых организмов, но может затруднять работу водного транспорта, рыболовства, наносить ущерб рекреации. К физическому загрязнению обычно относят и так называемое тепловое загрязнение, образующееся в результате сброса в водоемы и водотоки подогретых вод, уже использованных для охлаждения на ТЭС и АЭС. Химическое загрязнение гидросферы суши возникает в результате попадания в нее различных химических веществ и соединений. Это могут быть разнообразные вещества неорганического происхождения: кислоты, щелочи, сульфаты, а также тяжелые металлы и неорганические вещества, используемые в сельском хозяйстве (азот, фосфор, аммиак и др.). Это могут быть и продукты органической химии: спирты, фенолы, углерод, моющие средства – детергенты (или синтетические поверхностно-активные вещества – СПАВ), пестициды и гербициды. Это также могут быть нефтяные углеводороды и радиоактивные вещества (радионуклиды). Что касается биологического загрязнения, то его создают прежде всего микроорганизмы, многие из которых имеют характер болезнетворных. В водную среду они попадают вместе со стоками химической, целлюлозно-бумажной, пищевой промышленности, коммунального хозяйства городов, а в сельской местности – со стоками крупных животноводческих комплексов. Такие стоки могут служить источником самых различных заболеваний.

Статистика свидетельствует о том, что загрязнение водотоков и водоемов земной суши связано в первую очередь со сточными водами промышленно-городских агломераций и сельскохозяйственных территорий, которые загрязняют не только поверхностные воды, но и подземную гидросферу. Неочищенные сточные воды приводят к загрязнению водных объектов и разрушению естественных водных экосистем. Они приводят также к эвтрофикации (от греч. eutrophia – хорошее питание) вод, т. е. к повышению биологической продуктивности водных объектов в результате поступления в них биогенных элементов. Эвтрофикация связана также с сооружением водохранилищ, для которых характерны замедленные течения и водообмен.

Общий глобальный объем сточных вод все время растет. Уже к началу 1990-х гг. он превысил 2300 км4. Распределение его в этот период по крупным регионам мира показано на рисунке 30, анализ которого показывает, что, как и можно было ожидать, коммунальные стоки были особенно велики в Северной Америке, зарубежной Европе и зарубежной Азии, промышленные – в Северной Америке, зарубежной Европе, зарубежной Азии и СССР, а сельскохозяйственные – в зарубежной Азии, Северной Америке и СССР. В этих же регионах загрязнение сточными водами особенно сильно сказалось на функционировании экосистем, снизив их биопродуктивность, приведя к гибели многих видов флоры и фауны и угрожая здоровью людей.

В литературе приводится немало примеров того, как в отдельных частях этих регионов чрезмерно большие стоки уже стали превышать естественные возможности самоочищения водотоков и водоемов, а также примеров того, как в результате поступления загрязненных стоков в своего рода сточные канавы превратились реки Рейн, Сена, Темза, Северн, Тибр в Европе, Миссисипи, Огайо, Потомак в Северной Америке, да и многие реки стран СНГ.

Из всего сказанного вытекает насущная потребность в охране водных объектов от загрязнения, что позволило бы сохранить их в качестве важных элементов земной гидросферы и биосферы. Еще в 1977 г. под эгидой ООН была проведена Первая Всемирная конференция по водным ресурсам. И в дальнейшем эти вопросы еще не раз обсуждали на международном уровне. Особенно много внимания на таких обсуждениях обычно уделялось путям и способам очистки сточных вод.

Для очистки загрязненных стоков используют три главных метода – механический, биологический и физико-химический. Механическая очистка стоков служит для удаления из них твердых и взвешенных частиц. Биологическая очистка основана на использовании микроорганизмов, которые, разлагаясь, перерабатывают сложные органические соединения в растворенные безвредные вещества. После такой очистки при помощи аэробных процессов вода становится прозрачной, насыщенной кислородом. Однако ни механическая, ни биологическая очистки не обезвреживают некоторые виды промышленных стоков (содержащие соли тяжелых металлов и др.), поэтому в последнее время расширилось применение физико-химических методов очистки (дистилляция, вымораживание, обратный осмос и др.).

Оценивая разные методы очистки сточных вод, нужно иметь в виду, что даже самые современные из них не удаляют некоторых особо стойких загрязнителей, поэтому для нормального вторичного использования очищенных вод необходимо дополнительно разбавлять их чистыми русловыми водами. При этом на единицу объема сточных вод обычно требуется 10—12-кратное разбавление чистыми водами (а иногда и 100-кратное!). В научной литературе оно получило наименование качественного истощения водных ресурсов. Именно оно представляет собой главную опасность: выходит, что для разбавления 2300 км3 сточных вод, которые сбрасывались еще в начале 1990-х гг., даже по минимуму потребовалось бы 23 тыс. км3 чистой воды, а это половина всего годового речного стока! На самом же деле устойчивый, доступный для использования сток и того меньше.




Каталог: fulltext -> buuk
buuk -> Психологияның теориялық-методологиялық негіздері
buuk -> КІтапхана ісінің тарихы 050418 «Кітапханатану және библиография»
buuk -> Кітаптану және кітап тарихы 050418 «Кітапханатану және библиография»
buuk -> МамандықҚа кіріспе
buuk -> Xix ғ. Екінші жартысы – XX ғ. Басындағы ертіс өҢіріндегі
buuk -> Орындаушылық өнер кафедрасы
buuk -> Мамандыққа кіріспе «Музыкалық білім»
buuk -> М. Аллаберген тарих тудырған тұлғалар
buuk -> М ж. КӨпеев шығармаларындағы кірме сөздер тарихы оқУ ҚҰралы
buuk -> Қызметтік хаттар


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   51




©www.dereksiz.org 2020
әкімшілігінің қараңыз

    Басты бет