Теорема Кастильяно



бет1/3
Дата18.02.2022
өлшемі206.33 Kb.
#455491
  1   2   3
Теорема Кастильяно


Тема:Теорема Кастильяно
План:

  1. Теорема Кастильяно

  2. Расчетная модель к теореме Кастильяно

  3. Примеры приложения теоремы Кастильяно

Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации. Поставим задачу нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.

Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай (Рис.1), когда на балку в сечениях 1, 2, 3,... действуют только сосредоточенные силы , )... и т. д. Под действием этих сил балка прогнется по кривой и останется в равновесии.

Прогибы сечений 1, 2, 3,..., в которых приложены силы , , ,..., обозначим ,, ,... и т. д. Найдем один из этих прогибов, например -- прогиб сечения, в котором приложена сила .

П ереведем балку, не нарушая равновесия, из положения в смежное положение , показанное на фиг. 328 пунктиром. Это можно сделать различными приемами: добавить новую нагрузку, увеличить уже приложенные и т. д. балка энергия деформация кастильяно

Мы представим себе, что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка (Рис.1); чтобы при этом переходе не нарушать равновесия, будем считать, что эта добавка прикладывается статически, т. е. возрастает от нуля до окончательного значения медленно и постепенно.



Достарыңызбен бөлісу:
  1   2   3




©www.dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет